Морозостойкость цемента

. контакты 8 929 943 69 68 http://vk.com/club23595476 .

Какая морозостойкость у цемента ?

Воздействие внешней среды на цементный камень. Морозостойкость цемента

Все бетонные сооружения в атмосферных условиях подвергаются воздействию низких температур, что приводит к возникновению в бетоне деформаций.

Многократные теплосмены постепенно разрыхляют структуру цементного камня и бетона, снижают прочность, что может привести к их разрушению. Долговечность бетонов в условияхнизких температур, попеременного замораживания и оттаивания определяется таким свойством, как морозостойкость. Во время эксплуатации бетон может подвергаться неоднократному переменному замораживанию и оттаиванию. При замерзании вода увеличивается в объеме примерно на 9 %. Сначала при температуре немного ниже 0 0С замерзает вода, находящаяся в пустотах и макропорах цементного камня, так называемая свободная. Потом замерзает вода в капиллярах, в наиболее тонких из них при – 25 0С.

Вода в гелевых порах замерзает при еще более низких температурах. Под давлением льда на стенки пор и капилляров цементный камень значительно увеличивается в объеме. Максимальное увеличение объема наблюдается в области температур от –5 до –20 0С и достигает примерно 1-2 мм/м.

При оттаивании объем уменьшается, однако не достигает первоначального значения. При попеременном замораживании и оттаивании в цементном камне возникают необратимые линейные деформации. Напряжения, которые создаются в структуре цементного камня в результате давления замерзающей воды на стенки пор и микротрещин, являются главной причиной разрушения бетонных конструкций.

При замерзании возникает гидростатическое давление защемленной замерзающей воды, не имеющей контакта с воздухом. Повторяемость циклов замерзания и оттаивания приводит к постепенному разупрочнению структуры бетона и его разрушению.

Сначала начинают разрушаться выступающие грани, затем поверхностные слои, постепенно разрушение распространяется вглубь цементного камня. Особенно опасно замораживание в раннем возрасте железобетонных конструкций. При армировании гладкой арматурой сцепление ее с бетоном может снизиться на 80 %, а арматурой периодического профиля снижение достигает 25 % за счет зацепления выступов профиля, но после оттаивания бетона на контакте с арматурой остается тонкий воздушный зазор вместо водяной пленки, обволакивающий арматурные элементы, при эксплуатации в него могут проникать агрессивные реагенты, а также вода и кислород из воздуха, что может резко повлиять не только на несущую способность конструкции, но и на ее долговечность [11]. Еще один фактор, негативно влияющий на структуру и свойства бетона – внутренний массоперенос. В капиллярно-пористом материале при изменении теплового поля, вследствие возникновения температурного градиента, влага начинает перемещаться из зоны с более высокой температурой в зону с более низкой. При замерзании свежезабетонированной конструкции охлаждение ее начинается с поверхности и постепенно нулевая изотерма перемещается во внутренние слои конструкции. Влага из внутренних слоев бетона начинает по капиллярам передвигаться к нулевой изотерме.

Особенно это заметно на контакте зерен крупного заполнителя с растворной матрицей, так как на их контакте в нижней части за счет седиментации всегда образуется тонкая водяная прослойка, замерзающая в первую очередь. Когда до нее доходит мигрирующая из внутренних слоев вода, в том числе физически связанная, она переходит в лед и ранее образовавшаяся ледяная прослойка увеличивается в объеме. В дальнейшем при положительных температурах она тает и полностью нарушает сцепление заполнителя с растворной матрицей бетона. Таким образом, из-за массопереноса нарушается монолитность бетона, что особенно наглядно можно видеть в поверхностных слоях оттаявшего бетона. Исследованиями В.В. Москвина, Ф.М. Иванова и др. [7] установлено, что при разрушении бетонов под действием низких температур большое значение имеет не только общая пористость материала, но и ее характер – структура капилляров. Структура капилляров формируется уже при гидролизе и гидратации составляющих цемента, образующиеся капилляры можно разделить на активные и пассивные. В активных капиллярах вода замерзает, что приводит к возникновению напряжений, в пассивных напряжения не возникают. При формировании структуры капилляров возможно защемление воздуха в результате контракции системы цемент – вода, образующиеся сферические поры служат амортизатором напряжений при образовании льда и благоприятно влияют на морозостойкость бетона. Длительную сопротивляемость материала замораживанию и оттаиванию С.В. Шестоперов [12] связывает с наличием небольшого числа дефектных мест, с которых в дальнейшем начинается процесс деструкции. Дефектными местами могут быть различные капилляры, воздушные поры и полости, контактный слой  с  C2S, крупными зернами C3S, минералами зерен различных минеральных добавок, новообразования из минералов цемента. Наличие в цементе преимущественно силикатов кальция при небольших В/Ц и условиях длительных сроков твердения при оптимальных режимах обеспечивает частичное залечивание ряда дефектов. Чем в более ранние сроки твердения бетон подвергается замораживанию и оттаиванию, тем больше вероятность его разрушения.

Существенно влияет на морозостойкость минералогический состав цемента.

Наибольшей морозостойкостью обладают алитовые цементы, имеющие низкое содержание С3А.

Содержание С3А в цементе не должно превышать 6-8 %, а дозировка гипса – строго соответствовать содержанию алюминатов. Пропаривание резко снижает морозостойкость, поскольку при этом образуется значительное количество сообщающихся капиллярных пор. Отрицательно влияют на морозостойкость цемента активные и инертные добавки даже при дозировке 6-8 %. Очень тонкое измельчение цемента отрицательно сказывается на морозостойкости бетонных изделий. Морозостойкость бетона одного и того же состава зависит от наличия растворенных в воде солей, скорости замораживания, условий и длительности предварительного твердения.

Сильно снижает устойчивость против замерзания наличие капиллярной пористости, особенно в ранние сроки его твердения при В/Ц, превышающих 0,5-0,6. Для уменьшения капиллярной пористости необходимо снижать В/Ц. Установлено [2], что при В/Ц = 0,4-0,45 и длительном твердении в нормальных температурно-влажностных условиях почти вся вода используется на реакции гидратации и в цементном камне содержится минимум капиллярных пор.

Пористость такого цемента характеризуется гелевыми порами, в которых вода находится в псевдотвердом состоянии и не замерзает вплоть до очень низких, почти не встречающихся в практике строительства температур.

Чтобы снизить В/Ц, рекомендуется вводить пластифицирующие гидрофильные и, особенно, гидрофобизирующие добавки. Гидрофобизирующие добавки, которые вводятся в количестве 0,015-0,1 %, не только снижают водопотребность, но и затрудняют подсос и миграцию воды. Кроме того, они способствуют увеличению количества замкнутых сферических пор, которые не заполняются водой. Такие поры играют роль запасных емкостей, в которые при расширении во время перехода в лед выдавливается из капилляров вода. м

http://vk.com/club23595476
. контакты http://vk.com/club23595476 .